
(NASA-C_-IgI40&) THE SnFT_ARE

ENGINEERING LASI3RATORY: OPJ_CTIVES

(M,_iFy|_nd Univ.) 14 p

z9/61

N93-70910

Uncles

013o1_3

_3
:/C

3

Y

The Software Engineering Laboratory:

Objectives
Victor R. Basili

Marvin V. Zelkowitz

Department of Computer Science
University of Maryland

College Park, _d. 20742

I. INTRODUCTION

A great deal of time and money has been and will continue

to be spent in developing software. Much effort has gone
into the generation of various software development meth-

odologies that are meant to improve both the process and
the product ([MYER, 75], [BAKE, 74], [WOLV, 72]). Unfor-

tunately, it has not always been clear what the under-
lying principles involved in the software development

process are and what effect the methodologies have; it is
not always clear what constitutes a better product. Thus

progress in finding techniques that produce better,
cheaper software depends on developing new deeper under-

standings of good software and the software development

process through studying the underlying principles
involved in software and the development process. At the

same time we must continue to produce software.

To gain a better knowledge of what is good in.the current
methodologies and what is still needed, and to help under-

stand the underlying principles of the software develop-

ment process, we must analyze current techniques, under-

stand what we are doing right, understand what we are

doing wrong, and understand what we can change.

There are several ways of doing this. One way is to ana-
lyze the development process and the product at various

stages of development. Unfortunately, such analysis is
a tedious process. But it must be performed if we are to

gain any real insight into the problems of software

development and make improvements in the process. We
need to study carefully the effect of various changes in

the development process or the product to determine
whether or not a particular methodology has any real

effect, and more importantly, what kind of effect

([THAY, 76], [WALS, 77]).

This requires measures of all kinds, quantifi._ble and

nonquantifiable. Honquantifiable measures, although sub-

jective, reveal <_ great deal of information _bout the
product. %V,2c<_n "see" good desi_jn and code that meens

the problem requirements in a clear, understandable,

2-2

PREII_DING P_E BLANK NOT FILMED

ORII;IINAL PAGE IS

OF POOR QUALITY

[

[

L

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

I

L
]
|

t
d

]

]

]

]

]

l
/

effective way and is easy to modify and maintain in

unforeseen circumstances. This kind of understanding is

clearly needed, and clearly fruitful; it is accomplished

by reading and understanding the design and code. Unfor-

tunately, these judgements are not easy to quantify.

They require a great deal of time to analyze and measure

each product, or class of products.

A secondary approach is to develop a set of measures

that attempt to quantify these qualitative character-

istics of good software design and development. Al-

though there is currently no mechanical way of eval-

uating design, the development of quantitative measures

that correlate well with subjective judgements of quality

can aid in the understanding and evaluation of the

product and process. For example, the "goodness" of a

product is related to the time it takes to modify it and

the aspects of its organizational structure that permit

ease of modification and ease of finding and correcting

errors where ease is measured in terms of the time

required, number of places code needs to be changed, etc.

The "goodness" of the development methodology is related

to the "goodness" of the product it produces, e.g., the

number and difficulty of finding errors in the product

it produces.

It is important to understand what characterizes classes

of problems and products, what kinds of problems are

encountered and errors made in the development of a

particular class of products, whether or not a partic-

ular methodology helps in exposing or minimizing the

number or effect of a class of errors, what the relation-

ship is between methodology and management control,

estimating, etc. A better understanding of the factors

that affect the development of software and their inter-

relationships is required in order to gain better in-

sights into the underlying principles. The Software

Engineering Laboratory has been established, in August

1976, at NASA Goddard Space Flight Center in cooperation

with the University of Maryland to promote such under-

standing. The goals of the laboratory are to analyze

the software development process and the software pro-

duced in order to understand the development process,

the software product itself, the effect of various

"improvements" on the process with respect to the method-

olog%,, and to develop quantitative measures that corre-

late well with intuitive notions of good software.

The next section give_[_n overview of the research

objectives and experiments being performed at the Labo-

ratory. Section II_ contains the current list of fac-

tors that affect the software development process or

product and are to be studied or neutralized. The data

collection and data management activities are discussed
%

2-3

--4

_%in Section _V_ The last section contains information on r _r _
/ the current status and future plans for the Laborator';r._: _ ;\:;_

Further details of this project can be found in [BASI, _

77].

II. ACTIVITIES

It is clear that many kinds of data can be gathered and

analyzed to develop quantitative information about the

software process and the product to which it leads. The

laboratory has limited funding and personnel and for this

reason has limited its scope to studying three very

specific areas related to reliability, management, and

complexity. It is expected that the scope will even-

tually expand as we learn more about the collection of

valid data and what can be done with it. In this section

we discuss the research activities and the two classes of

experiments to be run.

Because error-free software is as yet an unattainable

goal, the reliability study will provide insight into

the nature and causes of software errors. We would like

to classify errors, expose techniques that reduce the

total number or classes of errors, and detect the effect

or lifetime of these errors ([SHOO, 75], [THAY, 76],

[ENDR, 75], [GANN, 75], [AMOR, 73]). We expect to detect

the point at which errors enter the process and the

relative costs of finding and fixing them.

Management of the software development process is as

poorly understood as the technology involved. We believe

that a major effort should be expended on this area. The

management aspect of the Software Engineering Laboratory

involves the analysis of the management process, the

classification of projects from a management point of

view and the development of reasonable management meas-

ures for estimating time, cost, and productivity

([BAUM, 63], [TAUS, 76]). we will study the effect of

various factors, such as time, money, size, computer

access, techniques, tools, organization, standards,

milestones, etc. We would like to understand at what

point in the development process, estimates become

reasonably accurate, how one can measure good visibility

and management control and under what conditions certain

methodologies help provide management control.

Lastly, there is a relation between the development

methodology and the product it produces. A good method-

ology should help produce a less complex product than a

"bad" one. We are trying to discover whether the com-

plexity of a software system can be measured by th6

structure of the resulting programs ([SULL, 73], [HELL,

72], [VANE, 70]). Do various techniques create a more

systematic structure, one that is easier to read and

2-4

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

I

I

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

maintain, where data and function are localized with a

minimal amount of interaction between modules? The

relationship between various complexity measures of pro-

gram structure will be examined throughout the develop-

ment process and such measures as error rate, development

time, the accuracy and speed of modification will be cor-

related with these complexity measures.

Two kinds of experiments are being conducted: screening

experiments and controlled experiments. In the screening

experiments, we are collecting data on a large assortment

of projects of varying sizes and types. The impact on

the development process is manifested by the requirement

that the developers fill out a set of data collection

forms (see Section IV). The purpose of the screening

experiments is to determine how software is developed now.

We are organizing a data bank of information to classify

projects for future reference and public availability,

analyze what methodologies are being used as Opposed to

what methodologies are supposed to be used, demonstrate

how carefully the actual implementation of a method-

ology can be monitored, discover what parameters can be

validly isolated, expose the parameters that appear to be

causing major problems, and discover the appropriate

milestones and techniques that show success under certain

conditions, while the data collected in the screening

experiments may not be complete or to_lly accurate, it

will provide input for the more strictly monitored

controlled experiments.

The purpose of the controlled experiments is to discover

the effect of various factors on the software develop-

ment process and product in a reasonably controlled

environment. A set of duplicate developments will be

performed and detailed data collected for all of them.

A carefully chosen set of techniques will be taught to

and used by one of the development groups, denoted as the

"impacted" group. We will then analyze the effect of the

introduced factors by comparing the impacted development

process and product in a reasonably controlled environ-

ment.

The experiment must be designed in such a way as to in-

sure that we are testing the real hypothesis, i.e., to

guarantee that we are measuring what we think we are

measuring. It is important that all the contributing

factors be well understood and the factors that we are

not studying be neutralized [CAMP, 66]. Our approach is

first to develop a particular experimental design, ana-

lyze its ability to neutralize potential interfering

factors, (i.e., individual programmer capability) and

perform one experiment. Based on this experience, the

design will be modified and experiments repeated until

we have arrived at a reasonable standard.

] 2-5

]

One current experimental design is to have twe groups,

Group 0 and Group I, each develop a product, A. We will

then impact Group 1 with a set of factors by teaching

them the use of certain development techniques. Both

groups will then develop a second small project B to give

Group 1 some experience with the techniques in an oper-

ating environment. Then both groups will develop product

C, Group 1 using the new approach. This gives us several

points of comparison. We can discover any difference in

personnel by comparing project A for both groups; the two

groups can then be more honestly compared in project C

by factoring out differences from project A. The meas-

ures developed for the areas of interest will be used to

compare the two processes and products.

In a second controlled experiment, several large scale

projects (5 to I0 man years each) are to be carefully

monitored with some of the personnel given a training

course and set methodology to use. Using the notation

above, these will be a set of C projects with no A and B.

While the projects are not identical, they are highly

similar and should yield information about differences

in techniques. In Section v, both of these controlled

• experiments will be described in greater detail.

III. FACTORS

There are a large number of factors that affect the soft-

ware development process and software product. Initially,

we are interested in a list of potential factors to

establish the kind of data that needs to be collected.

Next, we a_e interested in the kinds of factors that we

can reliably measure. From this measurable set of fac-

tors, we would like to isolate those that appear to have

a major impact on the development process and product,

i.e., those whose use or non-use show large variation in

our measures. Finally, when we have a better understand-

ing of the factors affecting the software development

process, we want to quantify them in some way by per-

turbing them to study their effects or neutralizing them

to make sure they are not affecting factors that are

under study.

Our procedure is to start with as complete a list of

factors and caLegories of factors as possible. We expect

continually to build, iterate, and refine'this list

through the activities of the laboratory. The develop-

ment of reporting forms and automated tools have helped

define the list of factors that we can isolate. The

screening experiments will help further isolate those

factors which we can measure and those that ,_ppear to

be contributing :_trongly to the various measures asso-

ciated with errors, complexity of program structure,

2-6

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

management difficulties, etc. The controlled experi-

ments will be used to demonstrate the effect of the

various factors that have been shown worth isolated

study.

A list of factors is given below, categorized by their

association to the problem, the people, the process,

the product, the resources, and the tools. Some

factors may fit in more than one category but are

listed only once.

A. People Factors: These include all the individuals

involved in the software development process

including managers, analysts, designers, programmers,

librarians, etc. People related factors that can

affect the development process include: number of

people, level of expertise of the individual mem-

bers, organization of the group, previous experi-

ence with the problem, previous experience with

the methodology, previous experience with working

with other members of the group, ability to

co/nmunicate, morale of the individuals, and

capability of each individual.

B. Problem Factors: The problem is the application or

task for which a software system is being developed.

Problem related factors include: t_,pe of problem

(mathematical, database manipulation, etc.), relative

newness to state of the art requirements, magnitude

of the problem, susceptibility to change, new start

or modification of an existing system, final product

required, e.g., object code, source, documentation,

etc., state of the problem definition, e.g., rough

requirements vs. formal specification, importance

of the problem, and constraints placed on the

solution.

C. Process Factors: The process consists of the partic-

ular methodologies, techniques, and standards used

in each area of the software development. Process

factors include: programming languages, process de-

sign languages ([VANL, 76]), specification lan@ua_es,

use of librarian ([BAKE, 75]), walk-throughs ([BAKE,

75]), test plan, code reading, top down design, top

down development (stubs), iterative enhancement

([BASI, 76]), chief programmer team ([BAKE, 75]),

Chapin charts, HIPO charts ([STAY, 76]), data flow

diagrams, reporting mechanisms, structured pro-

gramming ([MILl,, 72], [DAHL, 72]), liOS techniques

([HAMI, 76]), and milestones.

D. Product Factors: The product of a software develop-

ment effort is the software system itself. Product

factors include: deliverables, s_ze in lines of code,

2-7

]

words of memory, etc., efficiency tests, real-time

requirements, correctness, portability, structure

of control, in-line documentation, structure of data,

number of modules, size of modules, connectivity of

modules, target machine architecture, and overlay

sizes.

E. Resource Factors: The resources are the nonhuman

elements allocated and expanded to accomplish the

software development. Resource factors include:

target machine system, development machine system,

development software, deadlines, budget, and response

and turnaround times.

F, Tool Factors: The tools, although also a resource

factor, are listed separately due to the important

impact they have on development. Tools are the

various supportive automated aids used during the

various phases of the development process. Tool

factors include ([REIF, 75], [BOEH, 75], [BROW, 73]):

requirements analyzers (e.g., PSL/PSA [TEIC, 77],

system design analyzers, source code analyzers (e.g.,

FACES [RAMA, 74]), database systems (e.g., DOMONIC

[DOMO, 75]), PDL processors, automatic flowcharters,

automated development libraries, implementation

languages, analysis facilities, testing tools

([RAMA, 75], [MILL, 75]), and maintenance tools.

IV. Data Collection

Data collection occurs as four components -r_porting

forms, interviews, automatic collection of data by

computer, and use of automated data analysis routines.

ao Forms: There are seven forms that were defined to

obt-_n information on the factors given in Section

Ill. These forms are filled out by various members

of the project development team and are used to

gather information at various states of the develop-

ment process. They reveal the resource estimates

at inception, the overall layout of the system, the

updating of the estimates and the achievement of

milestones, the time spent in various activities,

the expenditures of resoHrces, and an audit of all

changes to the system. Several redundancy checks

have been included to validate the accuracy of the

information obtained.

Briefly, the seven forms are as fellows (See

Appendix 2 of [BASI, 77]) :

I, The General Project Summar? - ?his form is used

to classify the project and will be used in con-

junction with the other re[_oltin9 forms to

2-8

J

J

J

-i

2.

3.

4.

5.

6.

7.

measure the estimated versus actual development

progress. It is filled out by the project man-

ager at the beginning of the project, at each

major milestone, and at the end. The final

report should accurately describe the system

development life cycle.

The Programmer/Analyst Survey - This form is to

classify the background of the personnel on each

project. It is filled out once at the start of

the project by all personnel.

The Component Summary - This form is used to keep

track of the components of a system. A component

is a piece of the system identified by name or

common function (e.g., an entry in a tree chart

or baseline diagram for the system at any point

in time, or a shared section of data such as a

COM_40N block). With the information on this form

combined with the information on the Component

Status Report, the structure and status of the

system and its development can be monitored. This

form is filled out for each component at the time

that the component is defined, at the time it is

completed, and at any point in time when a major

modification is made. It is filled out by the

person responsible for that component.

The Component Status Report - This form is used

to keep track of the development of each compo-

nent in the system. The form is turned in at

the end of each week and for each component lists

the number of hours spent on it. This form is

filled out by persons working on the project.

The Resource Summary- This form keeps track of

the project costs on a weekly basis. It is

filled out by the project manager every week of

the project duration. It should correlate

closely with the component status report.

Change Report - The change report form is filled

out every time the system changes because of

change or error in design, code, svecif[cations

or requirements. The form identifies the error,

its cause and other facets of the project that

are affected.

Computer Program Run Analysis - This form is used

to monitor the computer activities used in the

project. An entry is made every time the com-

puter is used by the person initiating the run.

D

2-9

B. Interviews: Interviews are used to validate the

accuracy of the forms and to supplement the infor-

mation contained on them in areas where it is

impossible to expect reasonably accurate infor-

mation in a form format. In the first case spot

check interviews are conducted with individuals

filling out the forms to check that they have

given correct information as interpreted hy an

independent observer. This would include agree-

ment about such things as the cause of an error

or at what point in the development process the

error was caused or detected.

In the second case, interviews will be held to

gather information in depth on several management

decisions, e.g., why a particular personnel

organization was chosen, why a particular set of

people was picked, etc. These are the kinds of

questions that often require discussion rather

than a simple answer on a form.

C. Automatic Data Collection: The easiest and most

accurate way to gather information is through an

automated system. Throughout the history of the

project, more and more emphasis will be placed

on the automatic collection of data as we become

more aware what data we want to collect, i.e.,

what data is the most valuable and what data we

can or need to get, etc. More energy will be

expended in the development or procurement of

automatic collection tools as the laboratory

continues.

The most basic information gathering device is

the program development library. The librarian

will automatically record data and alleviate the

clerical burden from the manager and the pro-

grammers. Copies of the current state of affairs

of the development library will be periodically

archived to preserve the history of the devel-

oping product.

A second technique for gathering data auto-

matically is to analyze the product itself,

gathering information about its structure using

a program analyzer system. A set of modifica-

tions to the FACES system is currently underway

and will progress as the laboratory gains

more experience. These modifications are geared

at getting more of the kind of information about

the product required for our measures.

D. Database analysis: The above data collected on

[

[

[

[

[

I

l

[

I

!

1

i

I

I

I

I

I

2-10

]

J 4

J

!
.J

J

]

]

]

]

]

]

]

]

]

]

]

the project will be stored in a computerized

database. Data analysis routines are being

written to collect derived data from the raw

data in the database. The data that is being

collected is being processed by a PDPll-based

system. For ease of implementation, it utilizes

the INGRES relational database system [HELD, 75]

which runs under the UNIX operating system.

V. Current Status

Beginning in November, 1976, most new software tasks

that were assigned by the Systems Development Section of

NASA/GSFC were given the added responsibility of filling

out the forms, and thus entered our set of screening

experiments. At the present time, about a dozen projects

are currently involved. These projects are mostly ground

support routines to various spacecraft projects. This

consists of attitude orbit determinations, telemetry

decommutation and other control functions. The software

that is produced generally takes from six months to two

years to produce, is written by three to six programmers

most of whom are working on several such projects simul-

taneously, and consists of six man-months to ten man-

years of effort. Projects are managed by NASA/GSFC

employees and the personnel are either NASA personnel or

outside contractors.

In June of 1977, the first of the controlled experi-

ments began. Two teams (0 and I) are assigned tasks to

be designed and developed for delivery to the Systems

Development Section_ The format of these tasks satisfy

the experimental design outlined in Section II.

i.e., A o XB ° C o

A 1 YB 1 C 1

where A i, B i, and Ci, represent tasks to be developed

by team i and X and Y are training sessions. These

tasks will be developed on the PDP-II/70 at NASA/GSFC.

One team will consist of in-house NASA/GSFC personnel

while the other will consist of contractor personnel.

The tasks will consist of five separate subtasks with

two comprising project 'A', one project 'B', and two

comprising project 'C'. All subtasks require somewhere

on the order of three man-months of effort.

Team 1 will be given a training session (Y) after com-

pleting the A projects, consisting of several techniques:

PDL, Structured Programming, Walk-throughs, use of

Librarians, Code Reading, and will also be given _ small

project B to take into account the necessary learning

P

I

r_

I 2-11

curve before Project C is undertaken. Team 0 will also

be given a training session and a B project, but will

not be-taught the above techniques.

For this first controlled experiment, there is complete

control of the development process. The A projects

enable us to determine the background of the personnel

an.i the C projects enable us to determine the effects of

the training sessions. The small B task enables us to

filter out much of the learning curve involved in

learning new techniques. Due to cost considerations,

the duplicate developments must necessarily be kept

small; however, the projects are large enough to require

team interaction among the programmers and therefore we

believe that they are generalizable to larger projects.

In addition, the techniques taught in the Y training

session are those most applicable to team situations.

A second, IonTer range, controlled experiment was begun

in March, 1977. In this case, several similar large

scale projects are being carefully monitored. These proj-

ects can be summarized by the following table:

Project Man Years Techniques Us_d

1 6 NONE

2 4½ Structured code, Librarian,

code reading

3 4_ Training session Y of

experiment 1

4 6 Not yet defined

In this case we are performing C-like experiments of con-

trolled task I. Due to budgetary restrictions, it is

not possible to duplicate the development of each, how-

ever, the tasks are highly similar and should give us

results similar to the strictly monitored controlled

task I. While we realize that we have less control over

this experiment, this controlled experiment allows us to

study larger projects. By varying the methodology, we

expect to observe differences in project progress.

TLe next stop will be to define controlled experiment 3,

based upon the preliminary results of experiments 1 and

2. It is expected that controlled experiment 3 will

begin in early 1978. In this case, the techniques taught

in training sessions X and Y and used in C, may be

changed to reflect the new techniques to be _easured.

It is expected that as this process continues over sev-

eral iterations, quantitative data nn var_ou_ products

an(] development [)recesses will result.

[

[

[

[

[

[

[

[

l

I

i

I

!

I

I

I

r

2-12

]

]

]

]

]

]

]

, Im

i

ACKNOWLEDGMENTS

The development of this laboratory has involved the

efforts of many people, including Robert W. Reiter,
David L. Weiss, Howard J. Larsen, Charles L. Wolf,

Frank McGarry, Richard des Jardins, Walter Truszkowski,

Robert Nelson, and Keiji Tasaki.

REFERENCES

[AMOR, 73] Amory, W., J. A. Clapp, A Software Error

Classification Methodology, MTR 2648, Vol.
VII, The Mitre Corporation, June, 1973.

[BAKE, 75]

[BASI, 75]

[BASI, 77]

Baker, F. T., Structured Programming in a

Production Programming Environment. Inter-
national Conference on Reliable Software,

Los Angeles, April, 1975, (Sigplan Notices
I0, 6, June i, 1975, pp. 1721185).

Basili, V. R., A. J. Turner, Iterative en-

hancement: a practical technique for soft-
ware development, IEEE Transactions on Soft-
ware Engineering, I, No. 4, December, 1975,

pp. 390-396.

Basili, Victor R., Zelkowitz, Marvin J.,

et al., The Software Engineering Laboratory,

Un-_rsity of Maryland Computer Science
Technical Report, TR-535, Mag, 1977, 104

pages.

[BAUM, 63] Baumgartner, J. S., Project Management,

Richard D. Irwin, Inc., 1963.

[BOEH, 75] Boehm, B. W., R. K. McClean, D. B. Urfrig,

Some Experience Aids to the Design of Large
Scale Reliable Software, IEEE Transactions

on Software En_ineerin_ i, No. i, March, [975,

pp. 125-133.

[BROW, 73] Brown, J. R., A. J. De Salvia, D. E. Heine,

J. G. Purdy, Automated software assurance,

Program Test Methods, Prentice Hall, 1973,
pp. 181-203.

[CAMP, 66] Campbell, D. T., J. C. Stanley, Experimental

and quasi-experimental designs for research,
Chicago, Rand McNally Publishing Co.,

[DAHL, 72] Dahl, O., E. Dijkstra, C. A. R. Hoare,

Structured Pro_rammin__, New York, Academic
Press, 1972.

2-13

[DOS!O, 75]

[ENDR, 75]

[GANN, 75]

[HAMI, 76]

[HELD, 75]

[HELL, 72]

[MILL, 72]

[MILL, 75]

[RAME, 75]

[REIF, 75]

Domonic User Guide, Advanced Technology Group,

Data Processing Center, Texas A&M University,

1975.

Endres, A. B., An Analysis of Errors and

Their Causes in System Programs, IEEE Trans-

actions on Software Engineerinq I, No. 2,

June, 1975, pp. 140-149.

Gannon, J. D., J. J. Homing, Language

Design for Programming Reliability, IEEE

Transactions on Software Engineering i, No. 2,

June, 1975, pp. 179-191.

Hamilton, M., S. Zeldin, Higher Order Soft-

ware - A Methodology for Defining Software,

IEEE Transactions on Software Engineerinq 2,

No. i, March, 1976, pp. 9-32.

Held, G., M. Stonebraker, E. Wong, INGRES -

A relational data base system, National Com-

puter Conference, 1975, pp. 409-416.

Hellerman, L., A Measure of Computational

Work, IEEE Transactions on Computers 21, No.5

1972, pp. 439-446.

Mills, H. D., Mathematical Foundations for

Structured Programming, FSC 72-6012, IBM

Corporation, Gaithersburg, Maryland 20760,

February, 1972.

Miller, E. F., Jr., Methodology for Compre-

hensive Software Testing, Interim Report,

Rome Air Development Center, RADC-TR-75-161,

June, 1975, AD# A013111.

Myers, G., Software Reliabilit Z Through con-

posite Design, New York, Mason Charter, 1915.

Ramamoorthy, C. V., S. F. Ho, FORTRAN auto-

matic code evaluation system (FACES), part I.

Memorandum No. ERL-M-466, Electronics Re-

search Laboratory, University of California,

Berkeley, August, 1974.

Ramamoorthy, C. V., S. B. F. Ho, Testing

Large Software with Automated Software Eval-

uation Systems, IEEE Transactions on Software

I, No. I, March, 1975, pp. 46-58.

Reifer, D. J., "Automated Aids for Reliable

Software," An Invited Tutorial at the 1975

International Con[erence on Reliable Software,

21-23 April 1975.

2-14

ORI_NIAL PAQ£ IS

OF POOR QUALITY

J

3

]

]

]

]

]

]

l

]

l

[SHOO, 75] Shooman, M. L., M. I. Bolsky, "Types, Distri-

bution, and Test and Correction Times for

Programming Errors," Proceedings 1975 Con-

ference on Reliable Software, April 21-23,

1975_ 'pp. 347-362.

[STAY, 76] Stay, J. F., HIPO and integrated program

design, IBM Systems Journal 15, No. 2, 1976,

pp. 143-154.

[SULL, 73] Sullivan, J. E., Measuring the complexity of

computer software, Mitre Corp. Report MTR-

2648, Vol. V, June, 1973.

[TAUS, 76] Tausworthe, R. C., Standard Development of

Computer Software, Part 1 Methods, Jet Pro-

pulsion Lab, Calif. Inst. of Technology,

Pasadena, Calif., July, 1976.

[TEIC, 77] Teichroew, D., E. Hershy, PSL/PSA: A Computer-

aided Technique for Structured Documentation

and Analysis of Information Processing 3ys-

tems, IEEE Transactions Software Engineering

3, No. i, January, 1977, pp. 41-48.

[THAY, 76] Thayer, T. et al., Software reliability study,

TRW Defense and Space Systems Group, National

Technical Information Services AD-A030-798,

August, 1976.

[VANE, 70] Van Emden, M. H., The hierarchial decomposi-

tion of complexity, Machine Intelligence 5,

1970, pp. 361-380.

[VANL, 76] Van Leer, P., Top-down development using a

program" design language, IBM Systems Journal

15, No. 2, 1976, pp. 155-170.

[WALS, 77] Walston, C. E., C. P. Felix, A method of pro-

gramming measurment and estimation, IBM

Systems Journal, No. i, 1977, pp. 54-73.

[WOLV, 72] Wolverton, R. W., The Cost of Developing

Large Scale Software, TRW Software Series

TRW-SS-73-01, March, 1972.

Research supported in part by grant NSG-5123 from the

National Aeronautics and Space Administration to the

University of Maryland.

2-15

]

